CHROM. 16,106

#### Note

#### Determination of pheophorbide a, pyropheophorbide a and phytol

YUIKO TAKEDA\*, YUKIO SAITO and MITSURU UCHIYAMA

National Institute of Hygienic Sciences, 1-18, Kamiyoga 1-chome, Setagaya-ku, Tokyo 158 (Japan) (Received June 28th, 1983)

It has been well known in Japan since olden times that ear shell (abalone), one of the favourite Japanese foods, which contains a number of chlorophyll derivatives, causes photosensitivity dermatitis<sup>1</sup>. Etiological studies<sup>1</sup> revealed that pheophorbide a and/or pyropheophorbide a are the main compounds with photodynamic action. These chlorophyll derivatives are also contained in chlorella food<sup>2-5</sup> and pickles<sup>6</sup>, whose yearly production in Japan is said to be more than 890,000 tons<sup>7</sup>. The detailed degradative pathway of chlorophyll to pyropheophorbide a, is known to be derived from chlorophyll a under the action of chlorophyllase localized in chloroplast<sup>8</sup>. This report is concerned with a concise microanalytical method for the determination of pheophorbide a, phytol, counterpart of pheophorbide a and estimation of chlorophyllase activity.

Various methods for the analysis of pheophorbide a and pyropheophorbide a have been published: thin-layer chromatographic  $(TLC)^{2,5,9,10}$ , paper chromatographic<sup>11</sup> and liquid chromatographic<sup>12</sup>. They are, however, too tedious for a routine procedure for foods.

We have devised a more convenient and more sensitive TLC method for the determination of pheophorbide a and pyropheophorbide a, and a gas chromatographic (GC) method for phytol in chlorophyll-containing foods. These techniques enable us to monitor rapidly the changes in the amounts of toxic pigments during processing and storing of foods.

#### EXPERIMENTAL

## Preparation of pheophorbide a, pyropheophorbide a and phytol

Pure pheophorbide a and pyropheophorbide a were prepared from chlorella protothecoides and from *Brassica juncea* var. *integrifolia* (Japanese name, Takana) as described by Tamura *et al.*<sup>4</sup> and Amano *et al.*<sup>2</sup>, respectively. The structures of pheophorbide a and pyropheophorbide a were confirmed by converting pheophorbide a into the known methylpyropheophorbide  $a^{13}$ , which was derived from pyropheophorbide a by methylation with diazomethane. Phytol was purchased from Wako.

# Extraction of pheophorbide a and pyropheophorbide a from chlorella and vegetables

The extraction procedure is based on the method reported by Tamura *et al.*<sup>4</sup> with slight modifications. Chlorella (100 mg; in the case of vegetables, 10 g) was mixed with 2 g of quartz powder (200 mesh) in a mortar and ground well with a pestle. The mixture was extracted three times with 20, 10, and 10 ml of 85% (v/v) acetone. Then 20 ml of the aqueous acetone extract (40 ml) was mixed with 40 ml of diethyl ether, and the extract released was washed twice with 40 ml of 3% Na<sub>2</sub>SO<sub>4</sub>. The ether extract was shaken with 20 ml of 17% HCl, and the acid extract was diluted with 150 ml of 5% Na<sub>2</sub>SO<sub>4</sub> and extracted twice with 20 ml of diethyl ether. The ether extract was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated to near dryness. The concentrated ether extract was dissolved in 1 ml of diethyl ether, which was used for determination of pheophorbide *a* and pyropheophorbide *a* by high-performance reversed-phase TLC (HPTLC-RP-8, F-254 s. from Merck).

# Extraction of phytol from chlorella and vegetables

Half the volume (20 ml) of the above aqueous acetone extract was mixed with 40 ml of 3% Na<sub>2</sub>SO<sub>4</sub> and shaken twice with 40 ml of *n*-hexane. The hexane extract was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated to 1 ml, which was placed on a column packed with activated charcoal (0.2 g) and alumina (2 g). The column was eluted with 10 ml of *n*-hexane and then with 30 ml of ethyl acetate. The *n*-hexane eluted was discarded and the ethyl acetate fraction was used for gas-liquid chromatography.

## Determination of pheophorbide a and pyropheophorbide a

For separation and identification of pheophorbide a and pyropheophorbide a, high-performance reversed-phase TLC was carried out. Two solvent systems were used: benzene-*n*-hexane-acetic acid (20:10:0.3, v/v) and methanol-acetone-2-propanol-water (70:18:2:10, v/v). Quantitative estimation was made by densitometry at 667 nm (TLC scanner CS-920, Shimadzu).

## Determination of phytol

Quantitative estimation of phytol was performed by gas chromatography at 250°C on a Hewlett-Packard Model 5840 A gas chromatograph equipped with a flame ionization detector and an all-glass column packed with 2% OV-101 on Chromosorb W (1.2 m  $\times$  3 mm I.D.).

## Hydrolytic activity of chlorophyllase in chorella or vegetables

The sample was mixed with acetone–0.1 M phosphate buffer, pH 8.0 (3:7) and incubated for 3 h at 37°C. Extraction and determination of pheophorbide a, pyropheophorbide a and phytol were performed as described above.

## Gas chromatography-mass spectrometry of phytol

Identification of phytol from chlorella was made by gas chromatography-mass spectrometry (GC-MS) on Dimaspec Model 321 GC/MS equipped with an all-glass column (1.2 m  $\times$  2 mm I.D.) packed with 2% OV-17 on Gas-Chrom Q (100-120 mesh) at 200°C.



Fig. 1. Thin-layer chromatograms of chlorophyll derivatives. Plate: HPLC-RP-8 F254 s precoated plate (Merck). Eluent: A = benzene *n*-hexane acetic acid (20:10:0.3); B = methanol-acetone-2-propanol-water (70:18:2:10). Spots: 1 = standard of pheophorbide a; 2 = standard of pyropheophorbide a; 3 = 1 + 2; 4 = extract from chlorella; 5 = extract from salted vegetable.

#### **RESULTS AND DISCUSSION**

High-performance reversed-phase thin-layer chromatograms of pheophorbide a, pyropheophorbide a and chlorella extract are shown in Figs. 1 and 2, which show enough resolution for precise quantitative analysis of pheophorbide a and pyropheophorbide a in samples. The limits of determination for pyropheophorbide a and pyropheophorbide a were 10 ng and 20 ng, respectively. Fig. 3 shows the calibration curves for both pigments. From the extraction step to final stage took only 2 h. The amount of phytol in foods was determined by GC (Fig. 4), with a determination limit of 0.001  $\mu$ g, compared with published values of more than 10  $\mu$ g<sup>14</sup> and 0.02  $\mu$ g<sup>15</sup>.



Fig. 2. Densitometric chromatograms of pheophorbide a(1) and pyropheophorbide a(2) from extract of chlorella (A) and salted vegetable (B) by TLC chromatoscanner (Shimadzu).



Fig. 3. Densitometric peak area as a function of spotted amount of pheophorbide  $a(\bullet)$  and pyropheophorbide  $a(\circ)$  on HPTLC plate.



Fig. 4. Gas chromatograms of phytol. S = standard phytol; A = extract from chlorella; B = extract from salted vegetable.



Fig. 5. GC electron impact mass spectrum of phytol. (A) Standard phytol. (B) Phytol from sample extract (chlorella).

#### TABLE I

# CHANGES IN THE AMOUNT OF CHLOROPHYLL DERIVATIVES BY CHLOROPHYLLASE DURING INCUBATION FOR 3 ${\rm h}$

Results are expressed as mean  $\pm$  S.D. (n = 3).

| Sample        | Content of pheophorbide a, pyropheophorbide a and phytol (mg/100 g) |                         |                 |                   |                         |                  |
|---------------|---------------------------------------------------------------------|-------------------------|-----------------|-------------------|-------------------------|------------------|
|               | Before incubation                                                   |                         |                 | After incubation  |                         |                  |
|               | Pheophorbide<br>a                                                   | Pyropheophor-<br>bide a | Phytol          | Pheophorbide<br>a | Pyropheophor-<br>bide a | Phytol           |
| Chlorella 1   | 75.1 ± 6.5                                                          |                         | $35.0 \pm 3.1$  | $421.5 \pm 35.8$  |                         | 315.0 ± 27.5     |
| Chlorella 2   | $70.5 \pm 5.8$                                                      | _                       | $35.6 \pm 2.7$  | $293.8 \pm 12.0$  | -                       | $210.3 \pm 10.0$ |
| Chlorella 3   | $61.0 \pm 4.5$                                                      | _                       | 26.9 + 2.0      | 153.8 + 5.8       | _                       | $73.0 \pm 8.5$   |
| Chlorella 4   | $190.1 \pm 10.3$                                                    | tomps.                  | $100.0 \pm 9.0$ | $227.0 \pm 15.5$  | _                       | $155.0 \pm 8.0$  |
| Chlorella 5   | $47.4 \pm 2.0$                                                      |                         | $25.3 \pm 1.0$  | $51.0 \pm 3.0$    | _                       | $25.5 \pm 2.0$   |
| Vegetable 1*  | $7.5 \pm 0.5$                                                       | _                       | $3.8 \pm 0.1$   | $10.3 \pm 0.4$    | $2.0 \pm 0.1$           | $6.4 \pm 0.2$    |
| Vegetable 2** | $7.0 \pm 0.3$                                                       |                         | $3.6~\pm~0.1$   | $6.6 \pm 0.2$     | $5.7 \pm 0.2$           | 6.0 ± 0.3        |

\* Vegetable 1 = Brassica s.p. Nozawana.

\* Vegetable 2 = Brassica pekinensis var. Hiroshima.

The structural confirmation of phytol in samples was made by GC-MS (Fig. 5). The spectrum indicates a molecular weight of 296 for phytol and is identical with that reported by Lilijenberg and Odham<sup>15</sup>.

This technique may also be applicable to the determination of chlorophyllase activity. Table I shows the amount of chlorophyll derivatives in chlorella and their changes after incubation for 3 h. In fresh chorella, phytol content (M.W. 296.5) was about half of the pheophorbide a content (M.W. 593.2) and consequently, the molar ratio was about 1:1. But in some incubated chlorella, it was about 3:2, which may be due to further decomposition of pheophorbide a during incubation. This indicates that chlorophyllase activity can be determined more precisely by determining phytol than by determining pheophorbide a.

#### REFERENCES

- 1 Y. Hashimoto and J. Tsutsumi, J. Food Hyg. Soc. Jap., 4 (1963) 185-191.
- 2 R. Amano, K. Ike and M. Uchiyama, Food Sanitation Res., 28 (1978) 739-745.
- 3 Y. Komai, K. Onuki, H. Yamagishi and T. Shiratori, Food Sanitation Res., 4 (1978) 747-752.
- 4 Y. Tamura, S. Nishigaki, T. Maki and Y. Shimamura, Food Sanitation Res., 4 (1978) 753-759.
- 5 K. Miki, O. Tajima, E. Matsuura, K. Yamada and T. Fukimbara, Nippon Nogeikagaku Kaishi, 54 (1980) 721-726.
- 6 K. Yamada and N. Nakamura, J. Jap. Soc. Food Natur., 25 (1972) 466-471.
- 7 T. Ogawa, Food Sanitation Res., 31 (1981) 437-446.
- 8 G. Krossing, Biochemistry, 305 (1940) 359.
- 9 R. J. Daley, C. B. J. Gray and S. R. Brown, J. Chromatogr., 76 (1973) 175-183.
- 10 S. W. Jeffrey, Biochim. Biophys. Acta, 162 (1968) 271-285.
- 11 Y. Chiba, I. Aiga, M. Idemori, Y. Satoh, K. Matsushita and T. Sasa, *Plant Cell Physiol.*, 8 (1967) 623-635.
- 12 S. J. Schwartz, S. L. Woo and H. von Elbe, J. Agr. Food Chem., 29 (1981) 533.
- 13 F. C. Pennington, H. H. Strin, W. A. Sevec and J. J. Katz, J. Amer. Chem. Soc., 86 (1964) 1418.
- 14 R. K. Ellsworth and H. J. Perkins, Anal. Biochem., 17 (1966) 521.
- 15 C. Lilijenberg and G. Odham, Physiol. Planta., 22 (1969) 686.